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Abstract
We study the transport properties of a long non-uniform quantum wire where the
electron–electron interactions and the density vary smoothly at large length scales. We show
that these inhomogeneities lead to a finite resistivity of the wire, due to a weak violation of
momentum conservation in the collisions between electrons. Estimating the rate of change of
momentum associated with non-momentum-conserving scattering processes, we derive the
expression for the resistivity of the wire in the regime of weakly interacting electrons and find a
contribution linear in temperature for a broad range of temperatures below the Fermi energy.
By estimating the energy dissipated throughout the wire by low-energy excitations, we then
develop a different method for deriving the resistivity of the wire, which can be combined with
the bosonization formalism. This allows us to compare our results with previous works relying
on an extension of the Tomonaga–Luttinger model to inhomogeneous systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent experiments on quantum wires and carbon nan-
otubes [1–15] have stimulated a lot of interest in the transport
properties of one-dimensional conductors. From a theoretical
point of view, interacting electrons in one dimension form the
so-called Luttinger liquid [16, 17], whose properties qualita-
tively differ from the conventional Fermi liquid state. Recent
progress in fabrication techniques has made possible the exper-
imental observation of various characteristic signatures of the
Luttinger liquid, such as the power-law behavior of the tun-
neling density of states [12–14], or the existence of separate
spin and charge excitations [15]. It is also expected, within the
Luttinger liquid theory, that the dc conductance of a quantum
wire connected to Fermi liquid leads is given by the quantum
of conductance G0 = 2e2/h [18–20]. This quantization of the
conductance has been reported in various experimental setups
since its first observation in a quantum point contact [1, 2].

However, in a number of recent experiments [3–11],
significant deviations from perfect quantization have been
observed in the regime of low electron density. These
deviations take the form of a shoulder-like structure below the
first plateau of conductance. Although weak at the lowest
temperatures available, this feature becomes more significant
as the temperature increases, turning into a quasi-plateau at

about 0.7 × (2e2/h). This so-called ‘0.7 structure’, which
is not expected in the Luttinger liquid theory, generated
much theoretical interest, though there is at present no
generally accepted microscopic theory. Most commonly,
the experimental results are interpreted as originating from
a spin-dependent mechanism. Such scenarios rely on a
spontaneous spin polarization of the wire [3, 21, 22], or on the
existence of a local spin-degenerate quasi-bound state whose
screening would lead to Kondo-like effects [23, 24]. Other
proposals considered various scattering mechanisms involving
plasmons [25], spin waves [26] or phonons [27]. Several
authors have also suggested that electron–electron interactions
may affect the transport properties in quantum wire devices in
a way that would be consistent with the ‘0.7 structure’ [28–31].

In this context, a number of recent theory papers studied
the electronic transport in a quantum wire modeled as a one-
dimensional system in which the interactions are limited to
a small region between two non-interacting leads. They
concluded that the backscattering of either single electrons
or pairs were the only mechanisms to significantly affect the
transport properties of the system [30, 31], but only if the
size of the interacting region is comparable to the Fermi
wavelength of the electrons in the wire. If, on the other
hand, the interaction strength varies smoothly over a much
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larger distance, such backscattering processes only lead to
exponentially small contributions which can be neglected.
Using the model of a non-uniform Luttinger liquid with
position-dependent parameters, it was found that no correction
to the quantized conductance of the wire arises in this
regime [18–20].

In this paper we show that even when the backscattering
processes can be ignored, the non-uniformity of the interaction
potential throughout the wire leads to a finite resistivity at
non-zero temperatures. Indeed, the inhomogeneity of the
interaction potential breaks the translational invariance of
the system, allowing for two-particle scattering processes
that conserve energy but not momentum. In section 2, we
qualitatively show how some of these processes give rise to
a finite resistivity and perform the corresponding calculation in
section 3. In section 4, we present an alternative derivation of
the resistivity in the language of the inhomogeneous Luttinger
liquid model, allowing us to compare our results with previous
works relying on this formalism [18–20]. Finally, in section 5
we discuss the relation of our results to the experiments
probing the transport properties of inhomogeneous quantum
wires. A brief summary of some of our results was reported
in [32].

2. Qualitative picture

Let us consider an infinite one-dimensional system of weakly
interacting electrons with a quadratic dispersion εp = p2/2m.
To develop a qualitative picture of the physics involved, we
restrict ourselves to the simple model of spinless electrons,
with a uniform density n throughout the device. (We will tackle
more realistic systems in the next section.) The inhomogeneity
of the system comes from the electron–electron interaction
whose strength varies smoothly along the wire.

When one enforces a dc current I to flow through the
device, the electrons start moving and acquire a drift velocity
vd proportional to this applied current: vd = I/ne. In the
reference frame moving with velocity vd along the wire, the
electronic subsystem is in an equilibrium state characterized
by a Fermi energy εF and a temperature T . This was recently
pointed out [33] in the context of Coulomb drag between two
parallel wires.

As we are interested in the low-energy properties of the
system, we focus on temperatures T � εF, so that the only
relevant excitations are close to the Fermi level. As a result,
one can isolate two well-defined branches corresponding to
two species of fermions: the right- and left-moving electrons.
Within each branch, the velocity of the electrons can be
approximated by a constant and is given by +vF and −vF

respectively for right- and left-movers. Upon changing from
the moving to the stationary frame of reference, the electron
velocities are modified in order to account for the drift velocity,
and change from ±vF to ±vF + vd. The consequences for the
electron fluid as described in the stationary frame of reference
are twofold. First, we need to introduce different Fermi
energies for right- and left-moving electrons, εF → ε

R,L
F =

(1/2)m(vF ± vd)
2. Second, since the density of states at

the Fermi level is inversely proportional to velocity, we now

have different densities of states for the two subsystems, ν ∝
1/vF → νR,L ∝ 1/(vF ± vd).

The latter result implies that the energy spacing between
states is not only modified as we change the frame of reference,
but also differs between the right and left branches in the
stationary frame. Compared to the moving frame, the energy
levels are stretched near the right Fermi point. This results
in a somewhat broader distribution function, which can be
interpreted as a slightly higher effective temperature TR for the
right-moving electrons (see figure 2). Similarly, near the left
Fermi point, the energy levels are squeezed compared to the
moving frame, resulting in a narrower distribution function,
corresponding to a lower effective temperature TL for the left-
moving electrons. These effective temperatures follow the
change in the density of states and are given by:

TR,L = T

(
1 ± vd

vF

)
= T

(
1 ± I

envF

)
. (1)

The nature of these effective temperatures can be understood
formally, by noticing that in the stationary frame, the system
is no longer in thermal equilibrium because of the finite
electric current. It follows that, quite generally, the occupation
probability of a given state is no longer given by the standard
Fermi–Dirac distribution. However, the introduction of the
effective temperatures (1) for right- and left-movers enables
one to write their occupation probabilities as Fermi functions
of energy.

Because right- and left-movers have different tempera-
tures, it is natural to expect that electron–electron interac-
tions will give rise to thermalization between the two branches.
In a uniform system, two-particle scattering processes can-
not lead to thermalization as the conservation of both energy
and momentum only allows processes which either exchange
the momenta of the two incoming electrons or leave them un-
changed [34]. On the other hand, in the case of inhomogeneous
wires, the strength of the interaction potential is non-uniform
so that the system is no longer translationally invariant, and
two-particle scattering processes which conserve energy but
not momentum are allowed.

A typical example of such electron–electron scattering
processes is shown in figure 1. It describes the scattering
of two electrons from an initial state with momenta p and
k to a final state with momenta p′ and k ′, and violates the
momentum conservation: p′ + k ′ − p − k = P < 0. Though
the loss of momentum associated with this scattering process
may affect the transport properties of the system, one could
argue that it is compensated by an equal gain of momentum
corresponding to the inverse process (p′, k ′) → (p, k). This
is however not the case here because of the temperature
difference between the two branches: the processes involving
a transfer of energy from the ‘warmer’ right-moving branch to
the ‘colder’ left-moving one statistically occur more often than
the corresponding inverse processes. As a result, the electronic
system loses more momentum than it gains.

This overall loss of momentum can be viewed as resulting
from a damping force, associated with the electron–electron
collisions, and proportional to the temperature difference
between the right- and left-moving branches. In order for a
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Figure 1. Electronic spectrum in the stationary frame, with the Fermi
energies and effective temperatures for the right- and left-moving
branches. The corresponding distribution functions near the right and
left Fermi points are displayed as functions of energy. An example of
non-momentum-conserving scattering process is provided.

constant current to flow through the wire, this damping force
has to be compensated by a driving force. The latter originates
from a local electric field which appears as a response of the
system to the external current. Using the force balance, and
keeping in mind that the temperature difference TR − TL ∝ I ,
this local electric field is proportional to the applied current
bias. This implies a finite resistivity of the wire.

3. Weakly interacting electrons in the stationary
frame

The above arguments provide a physical picture of how
inhomogeneities lead to a finite resistivity. We now proceed
with the calculation of the resistivity.

3.1. Model

Our starting point is a one-dimensional system of weakly
interacting electrons with spins. In order to account for
a non-uniform electron density n(x), we introduce a one-
particle potential U(x) originating from the surrounding gates
and impurities in the substrate. Moreover, the interaction
between electrons is inhomogeneous, and described by a
smoothly varying potential V (r, R), given in the center-of-
mass coordinates. The Hamiltonian for this system takes the
form

H = H0 + Hint (2a)

H0 =
∑
γ=↑,↓

∫
dx ψ†

γ (x)

(
− h̄2∂2

x

2m
+ U(x)− μ

)
ψγ (x)

(2b)

Hint = 1

2

∑
γ,β

∫
dR

∫
dr V (r, R) ψ†

γ

(
R + r

2

)
ψ

†
β

(
R − r

2

)

× ψβ

(
R − r

2

)
ψγ

(
R + r

2

)
, (2c)

where ψ†
γ (x) creates an electron with spin projection γ at

position x , and μ is the chemical potential. We assume
that the potential U(x) is a smooth function of position, and
that U(x) � μ. This allows us to introduce a position-
dependent Fermi energy εF(x) = μ − U(x). Similarly,
the position-dependent Fermi momentum and velocity are

Figure 2. The three non-momentum-conserving processes that
contribute to the resistivity. These processes can be designated using
the standard notation involving coupling constants [35]: the
scattering process represented in (a) corresponds to g2‖ − g1‖, while
(b) corresponds to g2⊥, and (c) to g1⊥. Following this
correspondence, in the text we use the notation ‖, 2 ⊥ and 1 ⊥ to
refer respectively to (a), (b) and (c).

straightforwardly defined as pF(x) = √
2mεF(x) and vF(x) =

pF(x)/m.
We keep a very general form for the interaction potential

between electrons and only make the following assumptions
concerning its characteristic length scales. On the one hand,
we assume for simplicity that the interaction is short range,
the potential decaying rapidly as a function of the distance r
between electrons. On the other hand, since we consider a
non-uniform system, the interaction depends on the position
R of the center of mass. The variations with respect to R are
smooth and occur at a typical length scale d , large compared
to both the Fermi wavelength and the range of the interaction
potential. Similarly, we assume that the potential U(x) varies
at the same typical length scale d as the interaction strength.

3.2. Resistivity

We focus now on temperatures in a broad range h̄vF/d � T �
εF. In order to compute the resistivity of the wire, we consider
a force balance on a small isolated segment of wire taken at
position x , whose length �x well exceeds the range of the
interaction while satisfying h̄vF/T � �x � d . When an
external current I is applied to the device, the response of the
system manifests itself as a local electric field E(x) = ρ(x)I ,
which in turn leads to a driving force eE(x)n(x)�x acting on
the electrons. This driving force is compensated by a damping
force�F resulting from the inhomogeneous electron–electron
interaction, so that the resistivity can be written as

ρ(x) = − �F

en(x)I�x
. (3)

The damping force can be evaluated as the change
in momentum per unit time associated with two-particle
scattering processes. In the regime kFd � 1, the processes
with a large momentum difference compared with the Fermi
momentum lead to exponentially small contributions. As a
result, in what follows we focus on processes which only
weakly violate the momentum conservation (see figure 2).

Because of the non-uniformity of the wire, strictly
speaking the momentum of the electron is not a well-defined
quantity. However, since U(x) varies smoothly over a
length scale d � �x , it is possible to introduce a well-
defined momentum over the size of the small segment under
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consideration. The expression for the momentum thus depends
on the position x of the small segment, and for a state of energy
ε is given by pε(x) = ±√

2m[ε − U(x)]. Here the + sign
corresponds to the right branch, the − sign to the left one.

Similarly, the eigenstates of the free Hamiltonian are
no longer given by simple plane waves but instead satisfy
[−h̄2∂2

x /2m + U(x)]
ε(x) = ε
ε(x). Keeping in mind that
the typical length scale d associated with the inhomogeneities
of the wire is much larger than the Fermi wavelength, we use
the semiclassical approximation, which yields


ε,±(x) = 1√
h̄|vε(x)| exp

{
± i

h̄

∫ x

0
dx ′√2m [ε − U(x ′)]

}

(4)
normalized according to

∫
dx
ε,±(x)
∗

ε′,±(x) = 2πδ(ε− ε ′).
Here the velocity is defined as vε(x) = pε(x)/m and the
index ± refers to the right/left branches. We ignored the
backscattered wave, since it only leads to exponentially small
contributions for kFd � 1.

The rate of change of momentum associated with the three
processes shown in figure 2 is evaluated using the Fermi golden
rule, so that the damping force acting on the electrons takes the
form

�F = 2π

h̄

∑
p,k,p′,k′

(∣∣∣V ‖
pk;p′k′

∣∣∣2 + ∣∣V 2⊥
pk;p′k′

∣∣2 + ∣∣V 1⊥
pk;p′k′

∣∣2
)

× δ(εp + εk − εp′ − εk′ )
(

p′ + k ′ − p − k
)

× [ f R
p f L

k (1 − f R
p′)(1 − f L

k′ )− f R
p′ f L

k′ (1 − f R
p )

× (1 − f L
k )], (5)

where we introduced Vpk;p′k′ as the matrix element of the
interacting Hamiltonian (2c) for scattering from the initial state
(p, k) to the final state (p′, k ′) according to the processes
shown in figure 2. The superscripts ‖, 2 ⊥ and 1 ⊥ refers to
the standard notation for these scattering processes [35]. The
occupation numbers f R,L introduced in (5) are given by the
Fermi distribution evaluated with the appropriate temperatures
TR,L(x), defined in section 2.

One readily sees from (5) that the damping force vanishes
at TR = TL. Using the fact that the temperature difference
TR − TL ∝ I is small in the linear response regime, we expand
the occupation numbers f R,L to first order in TR −TL. To avoid
redundant derivations, let us focus on the first process shown on
figure 2(a). The damping force corresponding to this scattering
process is then given by

�F‖ = − I

32π2eεF(x)

∫
dεp dεk dεp′ dεk′

× ∣∣V ‖ (
εp, εk; εp′, εk′

)∣∣2 εp′ − εp + εk − εk′

T
× (

p′ + k ′ − p − k
)
δ(εp + εk − εp′ − εk′ )

× f R
p f L

k (1 − f R
p′)(1 − f L

k′ ), (6)

where we converted the summations over states into energy in-
tegrals, and introduced the matrix element V ‖(εp, εk; εp′, εk′ )

evaluated using the set of eigenstates defined in (4).
Note that the expansion in TR − TL leads to an expression

for the damping force which is proportional to the applied
current. As a result, in the linear response regime we can

ignore any further dependence on I , as this would lead to
contributions that are non-linear in the current bias. This allows
us to use the Fermi energy εF and velocity vF as they are defined
in the equilibrium state, i.e. in the reference frame where the
electric current vanishes.

Focusing on states close to the Fermi energy, we can
simplify the expression for the eigenstates (4) of the free
Hamiltonian into


ε,±(x)  
εF,±(x) exp

[
±i(ε − εF)

∫ x

0

dx ′

h̄vF(x ′)

]
, (7)

where 
εF,±(x) is obtained from (4) by setting ε = εF. This
allows us to estimate the matrix element V ‖ to first order in the
interaction:

V ‖ (
εp, εk; εp′, εk′

) =
∫ x+�x

x
dR

1

[h̄vF(R)]
2

× exp

(
i
∫ R

0
dx ′ εp′ − εp + εk − εk′

h̄vF(x ′)

)

×
∫ �x

−�x
dr V (r, R)

(
1 − e−2ikF(R)r

)
. (8)

Here we introduced the Fermi wavevector kF(R) = pF(R)/h̄.
Using the fact that p and p′ on the one hand, and, k

and k ′ on the other hand, are on the same branch, we express
the momentum difference in terms of a difference in energy
by introducing the density of states. We then define ε =
εp′ −εp +εk −εk′ , and perform the remaining energy integrals.
Combining the resulting expression for the damping force
with (3), and substituting the matrix element (8), we obtain
the following expression for the resistivity associated with the
scattering process of figure 2(a)

ρ‖(x) = T

64e2εF(x)vF(x)n(x)�x

×
∫ x+�x

x
dR1

V0(R1)− V2kF(R1)

π h̄vF(R1)

×
∫ x+�x

x
dR2

V0(R2)− V2kF(R2)

π h̄vF(R2)

×
∫

dε

[
ε/4T

sinh (ε/4T )

]2
ε2

h̄vF(R1)h̄vF(R2)

× exp

(
iε

∫ R2

R1

dx ′

h̄vF(x ′)

)
. (9)

The shortened forms V0 and V2kF correspond to the zero-
momentum and 2kF Fourier components of the potential
V (r, R) with respect to its first variable r defined as

V0(R) =
∫

dr V (r, R) and

V2kF(R) =
∫

dr V (r, R)ei2kF(R)r .

(10)

At this stage, it is convenient to rewrite the energy
integral in (9) by replacing ε2 with a second derivative of
the exponential term with respect to R1 and R2, along with
the appropriate factors of h̄vF. Performing an integration by
parts in the position variables leaves us with an expression
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involving single derivatives of the dimensionless parameters
V0(R)/[π h̄vF(R)] and V2kF(R)/[π h̄vF(R)]. The remaining
integral over ε can be easily simplified by noticing that it is the
Fourier transform of a rapidly decaying function which only
extends over a range of energy comparable to temperature. For
temperatures T � h̄vF/d , it reduces to a delta function in
R1 − R2 which allows us to simplify (9) to

ρ‖(x) = h

64e2

T

n(x)εF(x)

[
∂x

(
V0(x)− V2kF(x)

π h̄vF(x)

)]2

, (11)

where we expanded the remaining position integral to first
order in �x .

The contributions corresponding to the remaining two
scattering processes can be computed following the same steps
and are readily obtained from (11) by replacing V0(x) −
V2kF(x) with V0(x) for ρ2⊥(x), and with V2kF(x) for ρ1⊥(x).
Combining the contributions from all three processes, the final
expression for the resistivity in the regime of temperatures
T � h̄vF/d takes the form

ρ(x) = h

64e2

T

n(x)εF(x)

{[
∂x

(
V0(x)− V2kF(x)

π h̄vF(x)

)]2

+
[
∂x

(
V0(x)

π h̄vF(x)

)]2

+
[
∂x

(
V2kF(x)

π h̄vF(x)

)]2
}
. (12)

This expression clearly stresses that the meaningful inhomo-
geneous quantity is not just the interaction potential but rather
the dimensionless parameter that involves both the electron–
electron interaction and the Fermi velocity. In particular, this
means that a system with a non-uniform density but homoge-
neous interactions between electrons still displays a non-zero
resistivity.

4. Weakly interacting electrons in the moving frame

We now introduce a different approach for evaluating the
resistivity of the system. Unlike the derivation of the previous
section, this new treatment is compatible with the bosonization
formalism. Along with providing an alternative derivation
of the result (12), our goal in developing this approach
is to compare with the results of previous works on the
inhomogeneous Tomonaga–Luttinger liquid [18–20].

4.1. Bosonization

Previous attempts at studying the transport properties of
quantum wires relied on an extension of the Tomonaga–
Luttinger model to inhomogeneous systems [18–20]. These
authors assumed that the inhomogeneities do not change
the form of the Hamiltonian, and can be accounted for by
introducing position-dependent velocities and Luttinger liquid
parameters. In the general case, however, a rigorous derivation
of the bosonized Hamiltonian for these systems is still lacking.
Here we show how such a bosonized Hamiltonian can be
derived explicitly in the case of a non-uniform system of
weakly interacting electrons.

The standard bosonization formula for weakly interacting
fermions involves the Fermi momentum as well as a

momentum cutoff (see e.g. [17]), and as such cannot be
straightforwardly extended to non-uniform systems where
both these quantities can develop a position dependence.
The key idea then is to map the inhomogeneous system
of electrons onto a set of fictitious fermions described by
a Hamiltonian whose non-interacting part is translationally
invariant. From there, a standard bosonization procedure
holds and the resulting Hamiltonian expressed in terms of
the new variables is very reminiscent of the conjectured
inhomogeneous Luttinger liquid Hamiltonian, in the limit of
weak interactions (see section 5).

Our starting point is similar to the one we considered
in section 3, namely a system of interacting electrons with
a non-uniform density described by the Hamiltonian (2). As
we noticed in the previous section, the non-uniform potential
U(x) appearing in (2b) breaks the translational invariance of
the system, already when no electron–electron interaction is
present. As a result, the eigenstates of the free Hamiltonian are
no longer plane waves but for energies close to the Fermi level,
they can be approximated by (7).

Up to a prefactor which depends on position but not on
ε, these low-energy eigenstates look like plane waves, putting
forth a more natural set of variables: the energy difference
ε − εF and X (x) = ∫ x

0 dx ′/h̄vF(x ′). An expansion of the
electron field operator ψγ,±(x) over these plane waves calls for
the introduction of a fictitious fermion field operator ηγ,±(X)
defined as

ψγ,±(x) = 
εF,±(x) ηγ,± (X (x)) , (13)

where 
εF,±(x) was introduced in (7). Note that the anti-
commutation relations satisfied byψγ,±(x) transfer to ηγ,±(X)
ensuring that {ηγ,σ (X), η†

β,σ ′ (Y )} = δσσ ′δγβδ(X − Y ).
Let us now derive the Hamiltonian describing the physics

of these fictitious fermions. This is accomplished by
substituting (13) into the Hamiltonian (2). By construction, the
free Hamiltonian is translationally invariant in the new variable
X . At low energy, the interacting part of the Hamiltonian
can be decomposed in three sectors corresponding to the
conventional g1, g2 and g4 processes [35]. The main difference
here is that the associated coupling constants are now position
dependent. They can be obtained from the Fourier components
of the electron–electron interaction potential.

As an example, consider the so-called g2‖ process.
Following [17], the coupling constant for this process is given
by the zero-momentum Fourier component of the interaction
potential, which in the case of our inhomogeneous system
corresponds to V0(x), introduced in (10). Replacing ψ with
η according to (13), and introducing the density operator
νγ,±(X) = η

†
γ,±(X)ηγ,±(X), the g2‖ process retains the same

form∫
dx g2‖(x)ργ,σ (x)ργ,−σ (x)

−→ π

∫
dX y2‖(X)νγ,σ (X)νγ,−σ (X) (14)

only with a dimensionless coupling constant given by
y2‖(X (x)) = g2‖(x)/π h̄vF(x). A similar treatment can be
applied to the remaining sectors of the interaction.
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The resulting Hamiltonian expressed in terms of the
fictitious field η can now be bosonized following the standard
procedure:

η↑,±(X) = Uγ,±√
2πα

exp

{ −i√
2
[±φρ(X)− θρ(X)± φσ (X)

− θσ (X)]
}

(15a)

η↓,±(X) = Uγ,±√
2πα

exp

{ −i√
2
[±φρ(X)− θρ(X)∓ φσ (X)

+ θσ (X)]
}

(15b)

where we introduced the fields φν and θν (with ν = ρ, σ )
satisfying bosonic commutation relations [φν(X), ∂Y θν(Y )] =
iπδ(X −Y ). Here Uγ,± are the standard Klein factors [17] and
α−1 is an energy cutoff1 introduced to regularize the theory in
the ultraviolet sector.

In terms of the bosonic variables, the Hamiltonian of the
system can be written as a sum of two terms describing the
excitations of charge and spin degrees of freedom respectively,
and takes the form

H = Hρ + Hσ (16a)

Hρ = 1

2π

∫
dX

[(
∂Xθρ

)2 + (
1 + yρ(X)

) (
∂Xφρ

)2
]

(16b)

Hσ = 1

2π

∫
dX

[
(∂Xθσ )

2 + (1 − yσ (X)) (∂Xφσ )
2
]

+ 2

(2πα)2

∫
dX yσ (X) cos

(
2
√

2φσ
)
. (16c)

The dimensionless parameters yρ and yσ are conventional
notation for combinations of y1, y2 and y4 [17] given by

yρ (X (x)) = V2kF(x)− 2V0(x)

π h̄vF(x)
yσ (X (x)) = V2kF(x)

π h̄vF(x)
,

(17)
where V0 and V2kF are the Fourier components of the
interaction potential as defined in (10).

Note that this form of bosonization clearly highlights
that the important variables are the dimensionless parameters
yρ,σ rather than the various interaction constants g1,2,4. The
calculation of the resistivity carried out in section 3 led to the
same observation, see (12).

4.2. Resistance and dissipation

A way to determine the resistivity of the system is to relate it
to the mechanism of dissipation of energy into the wire when
an external current bias is applied. This relation was explored
in [36] in the context of a quantum wire in the Wigner crystal
regime, and the method we outline here is similar.

In the presence of an applied current I = I0 cosωt , the
electrons start moving in the wire. More specifically, in the
dc limit ω → 0, one can assume that the current is uniform
throughout the wire and all electrons move in phase. As a
result, the position of the electrons depends on time and is

1 Considering that the fictitious fermions were introduced in the vicinity of
the electron Fermi surface, one should assume α−1 � εF.

related to the injected charge q(t) = I0ω
−1 sinωt defined

as I (t) = q̇(t). This time dependence of the positions
of the electrons can be accounted for by replacing x →
x + q(t)/en(x) in the position-dependent parameters of the
Hamiltonian. While this has no effect in practice when the
translational invariance holds, for an inhomogeneous system
it leads to a time-dependent perturbation to the Hamiltonian.
Alternatively, this amounts to describing the system in the
reference frame moving with the electron fluid. In this case, the
electrons experience the effect of an inhomogeneous potential
moving as a function of time.

In terms of the fictitious set of fermions ηγ,±(X),
one needs to substitute X in the dimensionless interaction
parameters yρ,σ by the time-dependent position X +
q(t)/en(X) where the density in these variables is given by
n(X (x)) = n(x)h̄vF(x). In the linear response regime, an
expansion to first order in q(t) leads to the following form of
the Hamiltonian:

H −→ H +
∫

dX
q(t)

en(X)
H′(X), (18)

where we introduced the notation H′(X) = H′
ρ(X) + H′

σ (X)
for the following quantities:

H′
ρ(X) = 1

2π

[
∂X yρ(X)

] (
∂Xφρ

)2
(19a)

H′
σ (X) = − 1

2π

[
∂X yσ (X)

]
(∂Xφσ )

2

+ 2

(2πα)2
[
∂X yσ (X)

]
cos(2

√
2φσ ). (19b)

The time-dependent perturbation in (18) acts as an
external driving force, resulting in the creation of spin and
charge excitations. These excitations are responsible for
dissipating the energy from the external force into the wire.
Using the Fermi golden rule, it is possible to estimate the
rates of these absorption and emission processes, and therefore,
the energy W dissipated in unit time into the system. In
the linear response regime, where the amplitude I0 of the
current oscillations is weak, the energy dissipated in unit time
is quadratic in I0 and is given by

W = h̄ω
2π

h̄

(
I0

2eω

)2 ∫ +∞

−∞
dt

2π h̄

(
eiωt − e−iωt

)

×
∫

dX

n(X)

∫
dY

n(Y )
〈H′(X, t)H′(Y, 0)〉, (20)

where 〈· · ·〉 stands for thermodynamic averaging.
The resistance of the system is then derived by comparing

the dissipated energy obtained in (20) with the Joule heat
law W = I 2

0 R/2. Since the charge part (19a) and the spin
part (19b) of the time-dependent perturbation commute, one
expects the resistance R of the wire to be expressed as the
sum of a spin and a charge contribution R = Rρ + Rσ ,
which can be evaluated separately. This can be understood
as the consequence of having two independent channels for
dissipating energy throughout the wire, corresponding to spin
and charge excitations [36]. After some manipulations, these
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two contributions to the resistance can be expressed in the dc
limit as

Rν = − 1

h̄e2

∫
dX

n(X)

∫
dY

n(Y )
lim
ω→0

Im
[Wret,ν(X,Y ;ω)]

ω
.

(21)
Here we introduced the retarded correlator Wret,ν as
the Fourier transform in time of Wret,ν (X,Y ; t) =
−iθ(t)〈[H′

ν(X, t),H′
ν(Y, 0)]〉, where ν = ρ, σ .

4.3. Charge contribution to the resistivity

In order to derive the contribution to the resistivity from
charge degrees of freedom, we substitute in (21) the expression
for H′

ρ introduced in (19a). The retarded correlator Wret,ρ

resulting from this substitution is quartic in the bosonic field
φρ . It is thus more convenient to express it in terms of
the corresponding time-ordered correlation function, via an
analytic continuation in frequency space. This allows for the
use of Wick’s theorem, ultimately leading to the following
expression of the retarded correlator:

Wret,ρ (X,Y ;ω) = − h̄

2π2

[
∂X yρ(X)

] [
∂Y yρ(Y )

]

×
[∫ β

0
dτeiνnτ

(
∂2

∂X∂Y
〈Tφρ(X, τ )φρ(Y, 0)〉

)2
]

iνn→h̄ω+iδ

,

(22)

where 〈T . . .〉 corresponds to the time-ordered correlation
function.

Since (22) is explicitly quadratic in the interaction, the
dominant contribution to the retarded correlator Wret,ρ can
be derived by using the free propagator of the bosonic field
φρ . The latter is readily obtained from the non-interacting
Hamiltonian, and is given by

〈Tφρ(X, τ )φρ(Y, 0)〉 = T
∑

n

∫
dK

2π

π

ν2
n + K 2

eiK (X−Y )e−iνnτ.

(23)
Combining (23) with (22), performing the integral over
imaginary time τ , and substituting the analytically continued
result into (21), the charge contribution to the resistance in the
dc limit reads:

Rρ = −π h̄T 2

8e2

∫
dX
∂X yρ(X)

n(X)

∫
dY
∂Y yρ(Y )

n(Y )

× 1

sinh2 [2πT (X − Y )]

{
1 − 2πT (X − Y )

tanh [2πT (X − Y )]

}
,

(24)

where we restricted ourselves to contributions up to second
order in the interaction.

One recognizes in (24) a rapidly decaying integral kernel
for |X − Y | � 1/T . In terms of real space quantities, this
corresponds to distances of order h̄vF/T . It follows that at
temperatures T � h̄vF/d the double integral in X and Y
is dominated by short-range contributions. This allows us to
reduce the expression (24) for the resistance to a single integral
over X . Changing variables back from X to x , the integrand of
the resulting expression for the resistance Rρ can be identified

with the charge contribution to the resistivity at position x in
space and is given by

ρρ(x) = h

128e2

T

εF(x)n(x)

[
∂x yρ(x)

]2
, (25)

where we focused on temperatures in the range h̄vF/d � T �
εF.

4.4. Spin contribution to the resistivity

The method used above to derive the charge contribution to
the resistivity can be readily extended to evaluate that of
spin degrees of freedom. Substituting the expression for H′

σ

into (21), one notices that the spin contribution splits off into
two parts: one coming from the quadratic term in φσ , the other
from the cosine term.

4.4.1. Quadratic term. The expressions for the quadratic
parts of H′

ρ and H′
σ are identical up to a sign, upon replacing

the charge parameter yρ and field φρ by their spin counterparts.
As a result, in order to derive the contribution to the transport
properties from the quadratic term in φσ , it is sufficient to
repeat the steps leading to (25) but replace yρ by yσ so that

ρσ,quad(x) = h

128e2

T

εF(x)n(x)

[
∂x yσ (x)

]2
. (26)

Here we again restricted ourselves to temperatures in the range
h̄vF/d � T � εF.

4.4.2. Cosine term. The contribution to the resistivity coming
from the cosine term of the spin Hamiltonian can be inferred
from (26) based on the following symmetry argument. In
terms of the bosonized Hamiltonian, the interaction-dependent
term appearing in the quadratic part of Hσ accounts for the
coupling between z components of the electron spins [17].
This term ultimately leads to the contribution ρσ,quad obtained
in (26). On the other hand, the cosine term in (16c) corresponds
to the coupling of the remaining x and y components [17].
Because of the SU(2) symmetry, the contributions from all
three components of the interaction between electron spins are
the same. As a result, we expect the cosine term to contribute
twice as much to the resistivity as the quadratic part of the spin
Hamiltonian.

This can be verified explicitly by substituting the cosine
term from (19a) into the expression for the retarded correlator
Wret,σ . After performing the analytic continuation and taking
the dc limit ω → 0, the cosine–cosine correlation function
takes the form

lim
ω→0

1

ω
Im

{[∫ β

0
dτeiνnτ

〈
T cos

(
2
√

2φσ (X, τ )
)

× cos
(

2
√

2φσ (Y, 0)
) 〉]

iνn→h̄ω+iδ

}

= − π3h̄T 2α4

sinh2 [2πT (X − Y )]

{
1 − 2πT (X − Y )

tanh [2πT (X − Y )]

}
.

(27)
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Here it is sufficient to perform the thermodynamic averaging
using the free Hamiltonian since this term enters Wret,σ with a
prefactor quadratic in the interaction parameter yσ .

One recognizes in (27) the same short-range kernel we
encountered in (24). It follows that, at temperatures T �
h̄vF/d , one can simplify the expression for the resistance into
a single integral over X . Changing back variables from X to x ,
and identifying the integrand in x with the resistivity, we obtain
the contribution from the cosine term ρσ,cos(x) = 2ρσ,quad(x),
as we argued from the SU(2) symmetry. The total contribution
from spin degrees of freedom thus amounts to three times the
result (26).

Combining the charge and spin contributions, the final
expression for the resistivity of the wire at temperatures T �
h̄vF/d is given by

ρ(x) = h

128e2

T

εF(x)n(x)

{[
∂x yρ(x)

]2 + 3
[
∂x yσ (x)

]2
}
.

(28)
Using (17) to replace the dimensionless parameters yρ(x) and
yσ (x) with their expression in terms of the electron–electron
interaction potential, the latter result becomes identical to (12).

5. Discussion

5.1. Inhomogeneous Luttinger liquid

It is interesting to compare the bosonized Hamiltonian we
derived in (16) to that of the inhomogeneous Tomonaga–
Luttinger model conjectured in [18–20]. To do so, we change
variables back from X to x , so that the Hamiltonian (16) takes
the form

H = Hρ + Hσ (29a)

Hρ =
∫

dx
h̄vF(x)

2π

[(
∂xϑρ

)2 + (
1 + yρ(x)

) (
∂xϕρ

)2
]

(29b)

Hσ =
∫

dx
h̄vF(x)

2π

[
(∂xϑσ )

2 + (1 − yσ (x)) (∂xϕσ )
2
]

+
∫

dx
2gσ (x)

[2παh̄vF(x)]
2

cos
(

2
√

2ϕσ
)
, (29c)

where we denoted ϕν(x) = φν(X (x)) and ϑν(x) = θν(X (x))
(with ν = ρ, σ ).

The charge Hamiltonian Hρ and the quadratic part of
Hσ are identical to the inhomogeneous Tomonaga–Luttinger
Hamiltonian [18–20], taken in the limit of weak interactions.
The important difference comes from the cosine term of the
spin Hamiltonian. This term was absent from previous works
which either discarded it arguing that the coupling constant gσ
renormalizes towards zero at low energy scales [37], or simply
focused on a system of spinless fermions [18–20]. To recover
a standard form for the cosine term, one needs to introduce
a position-dependent momentum cutoff [α(x)]−1 defined as
α(x) = αh̄vF(x), where α−1 is the energy cutoff introduced
in (15). Keeping in mind that momentum is no longer a
conserved quantity in our model, this position dependence
of the momentum cutoff was to be expected. Interestingly
though, the natural guess relying on the common interpretation
of α(x) as a small distance cutoff, would have led to a different
answer. Indeed, assuming that α(x) represents the shortest

inter-particle distance, one would expect it to be inversely
proportional to the electron density, i.e. α(x) ∝ 1/vF(x).

Although the quadratic part of our bosonized Hamiltonian
is similar to the model considered [18–20], we do not reach the
same final answer. This is because our treatment amounts to
considering perturbations to the Luttinger liquid Hamiltonian
which were not taken into account in previous studies. In
section 4, we treated I (t) as an external parameter. In
the framework of the Luttinger liquid model, it can also
be interpreted as an excitation of the charge mode. Using
the bosonization expression for the electric current I =
e(

√
2/π)φ̇ρ , one readily sees that q(t) can thus appear as a

dynamical variable, directly proportional to the charge field φρ .
As a result, the linear in q(t) perturbation to the Hamiltonian
in (18) corresponds, in the conventional Luttinger liquid theory,
to cubic terms in the bosonic fields of the form φρ(∂Xφν)

2

(ν = ρ, σ ). These terms are irrelevant perturbations to
the Luttinger liquid Hamiltonian, and as such are usually
discarded. However, it was proven that within the quadratic
Luttinger liquid Hamiltonian, non-uniform electron–electron
interactions do not contribute to the resistance [18–20]. It thus
makes sense to take these irrelevant perturbations into account.
Our approach showed that they affect the transport properties
in a non-trivial way and lead to a finite resistivity.

5.2. Connection with experiments

Our results are relevant to experiments performed on long
quantum wires. However, we focused on the case of
weakly interacting electrons which is unlikely to be realized
in experimental situations. Let us discuss to what extent
our conclusions are modified when this restriction on the
interaction strength is relaxed.

Though our results are not readily applicable in the
case of strong electron–electron interactions, the method
developed in section 4 which relies on bosonization suggests
that the temperature and density dependences of the resistivity
should not be affected by the strength of the interactions.
Experimental measurements of these dependences may thus be
compared with our results.

Furthermore, given the Hamiltonian of the system in the
strongly interacting regime, one could repeat the treatment of
section 4 in order to derive the resistivity. Unfortunately, a
rigorous derivation of the bosonized Hamiltonian in the case
of a strongly interacting inhomogeneous system is yet to be
found.

5.3. Equilibration

In our derivation, we assumed that the electronic subsystem is
in equilibrium in the moving frame. For this to be satisfied,
we need the wires to be longer than the typical length scale
leq associated with the processes of equilibration taking place
inside the wire. If the size of the wire becomes too short with
respect to the equilibration length leq, we expect our results to
be modified by an additional small prefactor of the order of
the ratio of these two length scales. This might lead to a non-
trivial temperature dependence of the resistance, depending on
the leading equilibration mechanism involved.
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Little is known about equilibration mechanisms in one-
dimensional interacting systems. In the case of weakly
interacting electrons, recent work [34] suggests that scattering
processes involving three electrons may be the leading source
of equilibration in the system. Because of consideration
of energy and momentum conservation, these three-particle
collisions should involve states near the bottom of the band,
resulting in a strong suppression at low temperatures. In
the experimentally relevant case of low electron density
and strong interactions, this analysis no longer holds and a
detailed treatment remains elusive. It is natural to expect
that the equilibration in the wire would become easier as the
interactions grow stronger.

6. Summary

In this paper we studied the effect of inhomogeneous electron–
electron interactions on the transport properties of a quantum
wire. We considered a very general form of the interaction
potential, and allowed for a non-uniform density of electrons
along the wire. We argued that the inhomogeneities allow for
non-momentum-conserving scattering processes which give
rise to a finite resistivity of the wire. We showed that in
the regime of weakly interacting electrons, such scattering
processes contribute to the resistivity as a linear in T term2,
over a broad range of temperatures T below the Fermi energy.
We also reformulated our results within the framework of the
inhomogeneous Tomonaga–Luttinger model, and analyzed the
differences with previous works relying on this formalism.
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